
I

AIAA-94-1213-CP

PREDICTIVE SUFFICIENCY AND THE USE OF STORED INTERNAL

,_ STATE N94-30564

David J. Musliner

Institute for Advanced Computer Studies

The University of Maryland

College Park, MD 20742
musliner@umiacs.umd.edu

Edmund H. Durfee and Kang G. Shin

Dept. of EE &_ Computer Science

The University of Michigan

Ann Arbor, Michigan 48109-2122

{durfee,kgshin}@eecs.umich.edu

_ _ Abstract

In all embedded computing systems, some delay

exists between sensing and acting. By choosing an

action based on sensed data, a system is essentially

predicting that there will be no significant changes

in the world during this delay. However, the dynamic
and uncertain nature of the real world can make these

predictions incorrect, and thus a system may execute

inappropriate actions. Making systems more reac-

tive by decreasing the gap between sensing and action

leaves less time for predictions to err, but still provides

no principled assurance that they will be correct.

Using the concept of predictive sufficiency de-

scribed in this paper, a system can prove that its

predictions are valid, and that it will never execute

inappropriate actions. In the context of our CIRCA

system, we also show how predictive sufficiency al-

lows a system to guarantee worst-case response times

to changes in its environment. Using predictive suf-

ficiency, CIRCA is able to build real-time reactive

control plans which provide a sound basis for per-

formance guarantees that are unavailable with other

reactive systems.

Introduction

Traditional AI planning systems 3'1°'15 have been

criticized because they may spend large amounts of

time building a plan that is out-of-date before it can

be used, and thus the actions that the plan chooses

may be inappropriate. For example, consider an in-

telligent autonomous vehicle that is waiting at a red

The work reported in this paper was supported in part
by the National Science Foundation under Grants 1RI-
9209031 and IRI-9158473, and by a NSF Graduate Fel-
lowship. The opinions, findings, and recommendations
expressed in this publication are those of the authors, and
do not necessarily reflect the views of the NSF.
Copyright © 1993 by David J. Musliner. Published by
the American Institute of Aeronautics and Astronautics,

Inc. with permission.

light. When the light changes to green, the vehicle's

sensors detect the change and, after some further pro-

cessing, the system decides to move through the inter-
section and on to its destination. But, if the system

spent too much time planning its entire route, the

light may have changed back to red, and the plan's

first action would be "inappropriate."

In response to this critique, researchers have de-

veloped reactive systems 1'2'4'6'13 that perform little

or no lookahead planning, instead choosing actions

based on current sensor inputs. One goal of this be-

havior is to keep the selected actions appropriate to

the current situation: because no planning is done,

an action can be chosen quickly once sensor readings

determine the current situation.

However, because computations can only occur at

some finite speed, there will always be some delay

between sensing and action. During this "sense/act

gap," sensed information is stored in the system, ei-

ther explicitly in memory modules or implicitly in the

communication and processing mechanisms of the sys-

tem. By choosing an action based on that stored in-

formation, the system makes an implicit prediction

that the stored information will continue to provide a

sufficiently accurate representation of the world. _

Because real-world systems are dynamic and some-

what uncertain, such predictions are inherently risky.

Gat _ suggested that these predictions and the asso-

ciated stored internal state are useful only at higher

levels of abstraction. We argue that, because the gap

between sensing and action is inevitable, it is not the

abstraction level but the magnitude of this delay (and

the requisite prediction) that is critical. Systems in

dynamic worlds must be "real-time," in the sense that

the utility of the system's computations depends not

only on their result, but on when that result is pro-

duced. 14 To guarantee correct performance, an intel-

ligent real-time system must ensure that the actions

it chooses are appropriate for the actual current state

of the world, not just the state of the world that was
last sensed.

298

Ratherthansolvingthereal-timeproblem,reac-
tivesystemssimplyoperatein a "coincidentlyreal-
time" manner7- theyfunctionasquicklyaspossi-
ble,in thehopesthat thesense/actgapwill be re-
ducedsomuchthatsignificantworldchangescannot
occurduringthegap. In thispaper,wepresenta
morerigorousapproachtodealingwiththesense/act
gap. Our approachconsistsof proving that signifi-

cant world changes cannot cause a particular selected

action to be inappropriate, by verifying that the pre-

dictions spanning the sense/act gap are valid.

In the next section, we lay the foundations for

this proof by defining the "interval of predictive suf-

ficiency," or the time during which an observation

provides sufficient evidence to accurately predict the

value of some proposition. In the following section,

we illustrate how explicit reasoning about predictive

sufficiency can be implemented, with examples from

CIRCA, the Cooperative Intelligent Real-time Con-

trol Architecture. s'9 We describe how CIRCA uses

predictive sufficiency while building real-time reactive

control plans, to guarantee that the system will never

choose inappropriate actions or miss real-time reac-

tion deadlines. This paper concludes with sections

discussing the type of knowledge that is required for

reasoning about predictive sufficiency, and pointing

out future directions for this research.

Defining Predictive Sufficiency

To accurately describe the concept of predictive suf-

ficiency, we must begin with some notation. We will

use a simple temporally-qualified mod_al logic to de-
scribe the state of a control system's knowledge. The

logical statement K(p[ti], tj) indicates that the sys-

tem knows, at time tj, that the proposition p holds

at time ti. For convenience, we will also use state-

ments of the form K(p[tc,, t_], tj), indicating that the

system knows, at time t j, that p holds continuously

over the time interval from ta to tZ.

A control system's operations can be generally ex-

pressed as the acquisition of a sensory observation,

the logical deduction of what that observation means
about the state of the world at the time the observa-

tion was made, the deduction of the predictions that

the observation allows the system to make about the

world following the observation, and the selection of

an action based on that knowledge. In our notation,

we have:

o[ti]
1 interpret

Vp E P: K(p[ti],tj)
predict

Vq Q : K(q[tq , re], tk)
select

where O[ti] is a sensory observation made at time

ti, P is the set of propositions which can be inferred

about the world at time ti from the observation, and

Q is the set of propositions that can be predicted over

the respective intervals [tq_, tqz]. These intervals are

the "intervals of predictive sufficiency," during which

the observation O is sufficient to predict the value of

the propositions Q. The time tj is the time by which

the system has derived its knowledge of P, and tk is

the time by which the system knows Q. Following

those deductions, the action a is chosen and executed

during the time interval [t_, t_Z].

We first use the concept of predictive sufficiency

to show how an action can be guaranteed to be ap-

propriate when it is executed. The key to avoiding

an inappropriate action is to ensure that the value of

the propositions used to choose an action will remain

unchanged long enough to keep the action appropri-
ate. This can be achieved by making action choices

based on propositions whose intervals of predictive

sufficiency cover the time during which the action's

preconditions are necessary. More formally, suppose

the action a requires a set of propositions R to hold

during the respective intervals [try, trb]. If R C_C_Q and

Vr E R : (4_ _< t_a) A (tr_ > trb), then the intervals

of predictive sufficiency that are supported by the ob-
servation O ensure that the required propositions will

hold as necessary.

For example, in the stoplight scenario described

earlier, the vehicle agent will at some point make an

observation confirming the proposition "the light is

green" (P). This proposition alone is not sufficient

to justify crossing the intersection, because there is

no guarantee that, at the time tj when P is known,

the light is still green. The knowledge resulting di-

rectly from interpreting sensor readings can only de-

scribe past states of the world. However, if the system
knows some information about the domain's dynamic

behavior, it can derive additional propositions that
describe the current and future worlds. In this ex-

ample, the system might know that the traffic signal

will switch to yellow for at least five seconds before

it turns red. So, although the system does not know

if the light is still green, it can conclude that, for at

least five seconds after the light was seen to be green,

the light must be either green or yellow, and the in-

tersection will be "safe" to cross (Q). If the agent is

sure that the time it takes to infer these propositions

from its observations and cross the intersection is less

than five seconds, it can guarantee that it will never

be in the intersection during a red light.

Thus the addition of domain modeling informa-

tion has allowed the system to make explicit pre-

dictions about the future state of the world, based

299

onstoredsensorreadings.Givenfurtherinformation
abouttheagent'sownperformance,thesepredictions
arethenshownto besufficientto justifycertainac-

tions. This example illustrates how predictive suffi-

ciency can cover the sense/act gap, avoiding inappro-

priate actions.

Implementing Predictive Sufficiency

In this section, we provide a high-level description

of CIRCA and show how the prototype implementa-

tion of the architecture explicitly reasons about pre-

dictive sufficiency and makes guarantees about its
behavior. Note that we do not claim this imple-

mentation is ideal; it serves only as a useful testbed

to demonstrate the concepts of predictive sufficiency.

More details on CIRCA are available in related pub-

lications, s,9

Figure 1 illustrates the architecture, in which an AI

subsystem (AIS) and Scheduler cooperate to strategi-

cally plan and schedule a set of reactive behaviors that

will cope with a particular expected domain situation.

The parallel real-time subsystem (RTS) is guaranteed

to accurately execute the behavior schedules, com-

prised of simple situation-response rules. In this pa-

per, we are focusing on how the prototype AIS explic-

itly reasons about the sense/act gap and predictive

sufficiency while planning reactions. Note that this

lookahead planning is performed while previously-

planned reactions are already executing on the RTS,

so the planning process can be viewed as "off-line."

To show how CIRCA uses predictive sufficiency, we

must first briefly describe the system's world model-

ing techniques, which it uses to reason about the be-
havior of the world and the actions that the system

should take to achieve its goals.

In the prototype implementation, the world model

takes the form of a directed graph in which nodes

represent possible states of the world and arcs rep-
resent instantaneous transitions between states. The

status of ongoing processes in the world is explicitly

encoded into the representation of a state. Important

changes in process status thus correspond to transi-

tions between states. The model distinguishes three

types of state changes: action transitions, performed

deliberately by the system's reactions; event transi-

tions, due to external world occurrences; and tempo-

ral transitions, due to the passage of time and ongoing

processes. Timing information is associated with each

transition, representing constraints on how long the
world must remain in a state until the transition may

occur. We now illustrate how this model is used by

the AIS to explicitly reason about the sense/act gaps

that will occur when planned behaviors are execut-

ing on the RTS, and how the system guarantees that

those gaps will not lead to inappropriate actions.

Avoidin_ Inappropriate Actions

Figure 2 shows an example portion of the graph-

based world model for the stoplight scenario described

above. Within the state descriptions, the model

shows that the stoplight can take on its three sig-

nal colors, Red, Yellow, and Green. In the Yellow

and Green states, it is safe for the agent to cross

("Safe2X"), but not in the Red state. In this sim-

ple example, we have abstracted out all of the agent's

own state except for the indication of whether it has

crossed the intersection or not. The different states

of the traffic signal are connected by temporal transi-

tions (double arrows) indicating that, as time passes,

the signM will transition to subsequent states. Each

temporal transition is labeled with the minimum pos-

sible delay before the transition occurs, perhaps de-

rived from the agent's previous experience with this

traffic signal. For example, the transition between
the Red and Green states indicates that the signal

will stay red for at least 60 seconds before turning

green.

When planning reactions to operate in this domain,

CIRCA does not build an enumeration of possible

world states and then plan actions; instead, it dy-

namically constructs the graph model and the plan

of actions together in a single depth-first search pro-

cess, essentially similar to a forward-chaining STRIPS

planner. 1° This process operates on a stack of world

model states, examining each state in turn and plan-

ning actions that achieve goals and preempt temporal
transitions that lead to failure.

To begin the planning process, the initial states are

pushed onto the state stack. Then, as long as the

stack is not empty, the system pops a state off the
stack and considers it the current state. The system

simulates all of the event transitions and temporal

transitions that apply to the current state, yielding

either new states that have not been examined yet or

states that have already been processed (i.e., states

for which actions have already been planned). New

states are pushed onto the state stack, while old states

are simply updated with the information that they

have a new source state. The system then chooses an

action to take in the current state, as determined by

a heuristic scoring function.

For example, if the system is told that the "red"

state .4 is its initial condition, it will first consider

the applicable event and temporal transitions, push-

ing the new "green" state B onto the stack. The

system will then try to plan an action for state.4;

since the state is not safe for crossing, the only ap-

plicable action is no-op (shown as a dashed line in

300

I Real-Time Subsystem_

reaction schedules _[r

feedback data r L

Scheduler

selected I I reactiOnreactions

AI Subsystem

(World Model)

schedules

Figure 1: Overview of CIRCA.

5 seconds
A B

j (Color Green)]

--t(s e X s oods-t(s e:x j
I !

I I sense state &

_' I I cross-intersection

no-op I
I 3 seconds

D V

[(Color Green))(Across-road T)

25 conds J

, cross-intersection

V

I(C°l°r Yell°w)](Across-road T) 2 seconds

Figure 2: An abstracted portion of the world model for the stoplight scenario.

Figure 2). The system will then mark state .4 as pro-

cessed, pop state B off the stack, and derive the new

successor state g via the temporal transition indicat-

ing that the light will change to yellow. Again an

action is chosen for the current state, but this time

the cross-intersection action is chosen because it

is applicable (Green is safe to cross) and because it

leads to the desired result. So at this point CIRCA

has planned a simple reaction indicating that, when

the light is green, the agent should cross. But the

system has not yet shown why this action is guaran-

teed to be appropriate when executed; it has not yet

addressed the sense/act gap, and the possibility that
the light will change before the cross-intersection

action is completed.

CIRCA addresses these issues by ensuring that the

propositions used to satisfy the action's preconditions

are covered by intervals of predictive sufficiency. The

system knows the worst-case execution time of all of

its sensing and action primitives, as well as their com-

binations. Thus the system knows exactly how long

it will take, in the worst case, to detect the green

light and cross the intersection (here, three seconds).

To check for predictive sufficiency, the system must

look for other domain processes that may be occurring

during the action (i.e., transitions to other states). In

this case, the system has recognized, based on domain

knowledge, that there can be a temporal transition

leading from the green state B to the yellow state g

after a minimum of 25 seconds.

As noted above, CIRCA does not know how long

the light has been green when it is observed; therefore,

in the worst case, it is assumed that the temporal

transition to the yellow state (? occurs at the same

time the system initiates the transition to cross the

intersection. This corresponds to the "ghost" action

transition in the figure (the dotted line), showing that

the action planned for state B may actually be applied

to state £, leading to a new state g where the signal

is yellow, but there is now a minimum of only two

seconds before a temporal transition leads to a red

light state.

In this process of looking at transitions out of the

state for which the action is planned, CIRCA has

shown that, although alternate results are possible,

the precondition of the action ("safe2X") is known to

hold for five seconds. This is the interval of predictive

sufficiency: seeing a green light allows the system to

guarantee at least five more seconds of safe crossing

time. Because the process of sensing the green light

and then crossing the street takes no more than three

seconds, the interval of predictive sufficiency is long

enough to cover the sense/act gap. Therefore, CIRCA

can plan this action and guarantee that it will only

301

be executed in appropriate situations*.

When CIRCA continues the planning process and

tries to choose an action for the yellow state g, it

finds that the cross-intersection action is appli-

cable and leads to the desired state. However, when

the system tries to ensure that the "safe2X" precon-

dition can be predicted to hold while the action is

executed, it finds that a temporal transition leaving

state g leads to the red state ,4, which is "unsafe2X."

Therefore, since the system does not know how much

time may have passed in the yellow state g before

the state was detected, and the subsequent state does

not satisfy the action's preconditions, the action is re-

jected. In summary, CIRCA has used its explicit un-

derstanding of predictive sufficiency to derive a com-

mon rule of thumb used by drivers who glance at a

traffic signal: if the light is green, go ahead and cross;

if the light is yellow, do not start crossing, because

the light may turn red too soon.

An interesting feature of this approach to avoiding

inappropriate actions is that it requires no informa-

tion about how frequently a particular sensory ob-

servation is being acquired-- the example said noth-

ing about how often the system checks to see if the

light is green. If the system never even checks to

see if the light is green, and thus never takes the

cross-intersection action, it will never perform

an inappropriate action. Clearly, this type of proof

is only useful for goals that have no deadline. For

real-time goals, that require response-time guaran-

tees, this method is not sufficient.

To describe CIRCA's approach to meeting such

real-time deadlines, we first introduce a more com-

plex application domain.

The Puma Domain

The stoplight domain was used above for its intu-

itive simplicity; CIRCA has also been applied to a

much larger robot control problem, illustrated by the

simulation image in Figure 3. The Puma is assigned

the task of packing parts arriving on the conveyor

belt into the nearby box. Once at the end of the belt,

each part remains motionless until the next part ar-

rives, at which time it will be pushed off the end of

the belt (unless the robot picks it up first). If a part
falls off the belt because the robot does not pick it

up in time, the system is considered to have failed.

Thus, the arriving parts impose hard deadlines on

the robot's responses; it must always pick up arriving

parts before they fall off the conveyor.

The Puma is also responsible for reacting to an

*CIRCA currently only supports this test for precon-

ditions that are required over the entire duration of an
action.

Figure 3: The Puma domain, with two hard real-
time deadline constraints.

emergency alert light. If the light goes on, the system

has only a limited time to push the button next to the

light, or the system fails. This portion of the domain

represents a completely asynchronous interrupt with

a hard deadline on its service time.

Real-Time Response Guarantees

To deal with the hard deadlines in the Puma do-

main, the planning methods described above are not

sufficient-- they do not ensure that reactions will be

timely, but rather that they will never be inappropri-

ate. As we shall see, CIRCA must merge even more

knowledge with its sensing information to guarantee

timely responses that meet hard deadlines.

Figure 4 illustrates a small portion of the world

model for the Puma domain t, showing the represen-

tation of the hard deadline on picking up arriving

parts. Parts are known to be spaced apart on the

conveyor by at least some minimum distance. After

a part arrives, the conveyor belt is considered to be

"busy" for some amount of time (corresponding to

the minimum part spacing) before the next part may

arrive. Thus, from state A (where CONVEYOR-

STATUS is BUSY) there is a temporal transition

to state B (where CONVEYOR-STATUS is FREE),

tagged with the value minA = l0 (seconds) to indi-

cate that state ,4 must persist at least that long be-

fore the transition to state B. From state B, an event

transition represents the fact that a part may arrive

_The full domain model includes more state features
and hundreds of states and transitions.

302

at anytime,leadingto stateC. Thepotentialfail-
ureresultingfromthepartfailingofftheconveyoris
representedbythetemporaltransitionoutofstateC,

also tagged with minA = 10: if the next part arrives

while this part is still on the conveyor, failure will

occur.

To understand CIRCA's approach to making

response-time guarantees, let us examine the plan-

ner's operation when it is considering state C. The

first phase of the planning process finds applica-

ble event and temporal transitions, and recognizes

that there is a potential temporal transition to fail-

ure. Since the failure is defined to be catastrophic,

CIRCA realizes that it must preempt the tempo-

ral transition. That is, CIRCA decides it must ex-

ecute some action that will definitely occur before

the earliest time the temporal transition to failure

can occur. A simple lookahead shows that the action

p±ckup-part-from-conveyor will successfully avoid

the failure. Now the only chMlenge is to ensure that

the action will happen quickly enough. To ensure that

the transition to failure is preempted, CIRCA com-

mits to repeatedly executing a reaction that checks

for the conditions of state C and implements the cho-

sen action, at least frequently enough to ensure that

the action will be completed before failure can occur.

That is, CIRCA decides how quickly it must poll the

sensors to detect the imminent failure and prevent it.

It is fairly obvious that, to guarantee that the sys-

tem will simply detect the potential failure repre-

sented by state C, which has a minimum possible du-

ration (mindur(P)) of 10 seconds, CIRCA must test

for the state at least once every l0 seconds. How-

ever, detecting the state C is not sufficient: the system

must be able to finish the action of picking up the part

before it can fall off the conveyor. In the terms intro-

duced previously, the interval of predictive sufficiency

during which the part is known to remain on the con-

veyor must cover the chosen action, in addition to its

preconditions. To provide this predictive sufficiency,

CIRCA relies on its additional knowledge about the

frequency with which CIRCA itself will be obtaining

sensory information. For example, if the period of the

repeated observations is p(O) seconds, then an obser-

vation in which the condition does hold, following an

observation in which the condition does riot hold, in-

dicates that the change of state must have occurred

in the last p(O) seconds. Therefore, the condition

must continue to hold for at least mindur(P) - p(O)
seconds.

Thus we have a modified interval of predictive suf-

ficiency, based on both knowledge of the domain and

knowledge about the ongoing performance of the re-

active system itself. The AIS actually reasons about

the performance of the reactive system it is design-

ing to derive the predictive sufficiency of the observa-

tions it plans to make. To guarantee that every real-
time reaction will be checked and executed before its

corresponding deadline, CIRCA must show that the

predictive sufficiency of the observations covers the

sense/act gap and the duration of the chosen action.

That is, mindur(P) - p(O) > t_z - ti. In our Puma

domain example, if the pickup-part-froth-conveyor

action takes 3 seconds, we have 10-p(O) > 3, so that

p(O) < 7. If CIRCA can guarantee to execute the re-

action that tests for state C and picks up the part at

least once every 7 seconds, it can guarantee that it

will not drop any parts off the conveyor t.

Making this reaction frequency guarantee is the

job of CIRCA's Scheduler module (see Figure 1).

The AIS uses the methods described above to de-

rive frequency requirements for mission-critical reac-

tions, and sends those reactions to the Scheduler. The

Scheduler examines the capacity of the RTS to see if
the available resources are sufficient to meet those re-

quirements: if so, a schedule of reaction executions
is returned to the AIS. If the RTS resources are not

sufficient to guarantee the reaction rates specified by

the AIS, the Scheduler will return an error message

to the AIS, indicating that some performance tradeoff

will be required in this overconstrained domain.

Knowledge Requirements

As we have noted, predictive sufficiency can only

be established by combining immediate sensor infor-

mation with additional knowledge about the domain.

The basic form of the required knowledge is the "min-

imum duration" of some condition. That is, the sys-

tem must know that some sensed state of the envi-

ronment always persists for some minimum amount

of time. In the stoplight domain, for example, the

system must know the minimum duration of each sig-

nal color. In general, this type of knowledge might be

acquired in one of two ways.

First, the system might have previous experience

with the domain (or similar domains), and be able to

extrapolate from that experience the requisite min-

imum durations. Experienced drivers know that no

green light lasts for less than 5 seconds. Learning and

past experience can thus play a key role in reasoning

about predictive sufficiency.

Second, knowledge of minimum durations may also

be derived from simple first principles, given precur-

sor knowledge of the maximum rate of related (under-

lying) processes. For example, in the Puma domain,

the minimum duration of the (CONVEYOR-STATUS

tAt least, not from this particular part of the state

space.

303

I CONVEYOR-STATUS BUSY

PART-ON-CONVEYOR NIL

PART-IN'RIPPER NIL

PART4N-BOX NIL

I art- falls-off-conveyor
rain A = 10 seconds

B C _9

-J PART-ON-CONVEYOR NIL _ PART.N-CONVEYOR T PART-ON-CONVEYOR NIL

pART-IN_GRB_PER NIL]part- I pART-IN_3RIPP_ NIL

.j to-next-slot t PART-IN-BOX NIL _ _'iVes t PART-IN-BOX NIL .j flora-conveyorkPiCkalp'p_rt" PART4U-BOXPART'_'/_'hIE T

rain a = 10 seconds

Figure 4: A small, abstracted portion of the Puma domain model.

BUSY) condition is determined by the maximum part

arrival rate, which in turn is based on the conveyor

belt speed and the spacing between parts. So if the

system knows that parts must be at least ten inches

apart and that the belt is moving at one inch per

second, then the maximum part arrival rate is six

parts per minute, and the minimum duration of the

(CONVEYOR-STATUS BUSY) condition is ten sec-
onds.

Currently, CIRCA makes no effort to learn

minimum-duration knowledge itself, and it has only

rudimentary, domain-specific methods to derive that

knowledge from process rates. Instead, our focus has

been on having CIRCA use that knowledge to reason

about predictive sufficiency, and investigating the ef-

fects of explicitly dealing with the sense/act gap.

Conclusion

We have argued that all computing systems must

make predictions about how the state of the world

will evolve during the delay between sensing and ac-
tion. The intuition behind the trend toward reac-

tive systems has been that reducing this delay sim-

plifies (but does not eliminate) prediction. In this

paper, we have described how this intuition is really

attempting to capture implicitly the concept of pre-

dictive sufficiency. By explicitly representing and rea-

soning about predictive sufficiency, we can determine

exactly how long a gap between sensing and acting is

allowable within a system, given its environment and

its capabilities.

Predictive sufficiency is a critical concept for em-

bedded agents, because it permits a system to make

guarantees about its behaviors. We have shown how

CIRCA implements predictive sufficiency to guaran-

tee that it will not execute inappropriate actions and

that it will react to its environment frequently enough

to meet real-time deadlines.

Explicitly reasoning about predictive sufficiency

also allows us to break away from the mind-set that

decreasing the delay between sensing and acting is al-

ways desirable. Specifically, knowing the predictive

sufficiency of an observation may allow a system to

avoid some sensor polling by caching sensory data. No

sensor readings need to be taken as long as a previous

observation's interval of predictive sufficiency remains

in force. We are investigating ways in which CIRCA

can use its explicit knowledge of predictive sufficiency

to design sensor caching schemes that maximize the

use it gets out of each observation, reducing the fre-

quency of costly observations without compromising

the system's performance guarantees.

Our investigation of predictive sufficiency is a first

step towards a more complete understanding of ex-

actly when stored internal state is useful, and when

it can lead to invalid predictions and failures. We

hope to unify this approach with the epistemic proofs

of Rosenschein and Kaelbling 11'12 to establish a full

theory of the correspondence between a system's in-

ternal state, its predictions, and the world. This the-

ory would allow strong prescriptive statements about

when and how to use stored internal state.

References

[1] P. E. Agre and D. Chapman, "Pengi: An Imple-

mentation of a Theory of Activity," in Proc. Na-

tional Conf. on Artificial Intelligence, pp. 268-

272. Morgan Kaufmann, 1987.

[2] R. A. Brooks, "A Robust Layered Control Sys-
tem for a Mobile Robot," IEEE Journal of

Robotics and Automation, vol. RA-2, no. 1, pp.

14-22, March 1986.

[3] R. E. Fikes and N. J. Nilsson, "STRIPS: A New
Approach to the Application of Theorem Proving

to Problem Solving," Artificial Intelligence, vol.

2, pp. 189-208, 1971.

[4] R. J. Firby, "An Investigation into Reactive

Planning in Complex Domains," in Proc. Na-
tional Conf. on Artificial Intelligence, pp. 202-

206, 1987.

[5] E. Gat, "On the Role of Stored Internal State in
the Control of Autonomous Mobile Robots," AI

Magazine, vol. 14, no. 1, pp. 64-73, Spring 1993.

[6] L. P. Kaelbling and S. J. Rosenschein, "Action
and Planning in Embedded Agents," in Robotics

and Autonomous Systems 6, pp. 35-48, 1990.

3O4

[7]T. J. Laffey,P. A. Cox,J. L. Schmidt, S. M.
Kao, and J. Y. Read, "Real-Time Knowledge-

Based Systems," AI Magazine, vol. 9, no. 1, pp.

27-45, 1988.

[8] D. J. Musliner, CIRCA: The Cooperative Intel-

ligent Real-Time Control Architecture, PhD the-

sis, The University of Michigan, Ann Arbor, MI,

September 1993. Also available as CSE-TR-175-

93.

[9] D. J. Musliner, E. H. Durfee, and K. G. Shin,

"CIRCA: A Cooperative Intelligent Real-Time

Control Architecture," to appear in IEEE Trans.

Systems, Man, and Cybernetics, vol. 23, no. 6, ,
1993.

[10] N.J. Nilsson, Principles of ArtificiaIIntelligence,

Tioga Press, Palo Alto, CA., 1980.

[11] S. J. Rosenschein, "Synthesizing Information-

Tracking Automata from Environment Descrip-

tions," Technical Report 2, Teleos Research, July
1989.

[12] S. J. Rosenschein and L. P. Kaelbling, "The Syn-

thesis of Digital Machines with Provable Epis-
temic Properties," in Proc. Conf. Theoretical As-

pects of Reasoning About Knowledge, pp. 83-98,
1986.

[13] M. J. Schoppers, "Universal Plans for Reac-
tive Robots in Unpredictable Environments," in

Proc. Int'l Joint Conf. on Artificial Intelligence,

pp. 1039-1046, 1987.

[14] J. A. Stankovic, "Misconceptions about Real-
Time Computing: A Serious Problem for Next-

Generation Systems," IEEE Computer, vol. 21,

no. 10, pp. 10-19, October 1988.

[15] D. Wilkins, "Domain-Independent Planning:

Representation and Plan Generation," Artificial

Intelligence, vol. 22, no. 3, pp. 269-301, April
1984.

305

